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Recently, advances in techniques for the detection of Lagrangian coherent structures
(LCSs) have driven forward understanding of kinematics and particle transport in a variety
of flows. One major shortcoming of these techniques, however, is the lack of an objective
procedure for identifying time scales of interest, or an ability to characterize the lives,
deaths, or age of coherent structures, especially when relevant flow time scales are larger
than the time scales associated with coherence. Here, we address these issues by proposing
a multiple object tracking framework frequently used in video analysis to extend the use
of existing LCS detection algorithms, allowing coherence time scales to be considered
independently of the overall flow evolution time scale and revealing dynamics of the LCSs.
Our approach enables the detection of evolving Lagrangian coherent structures, which are
created and destroyed throughout the larger time scales of analysis of complex flows.
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I. INTRODUCTION

Recent years have seen rapid advances in both the methods for and the uses of the detection
of coherent structures in a variety of flows. While instantaneous Eulerian methods like the λ2 or
Okubo-Weiss criteria are useful in certain contexts, such methods have received criticism for their
lack of objectivity (frame independence) and poor performance in predicting material transport [1].
To remedy these shortcomings, newer work has instead focused on the identification of Lagrangian
coherent structures (LCSs), groups of Lagrangian trajectories which remain dynamically close
to each other throughout some characteristic time period. This approach sidesteps both issues
with previous Eulerian methods, and has seen success in applications from predicting geophysical
transport [2] to search and rescue missions [3].

The basic approach for detecting LCSs is straightforward: Usually, some similarity measure is
built between particles in a flow over a fixed time scale τC . Next, an algorithm (often borrowed from
data science applications) is used to produce clusters drawn from the similarity metric. Hadjighasem
et al. [4], for example, built a similarity graph between particles using the dynamic interparticle
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distances over a time interval τC . The authors next employ spectral clustering, a well-known data
science algorithm [5], to produce groupings of coherent trajectories. Alternative approaches include
that of Schlueter-Kuck and Dabiri [6], where interparticle similarity is measured instead using kine-
matic similarity while ignoring the distance between trajectories, an approach which ensures that
similar motions are categorized together rather than just physical proximity. Some approaches avoid
interparticle measures altogether and instead focus on Lagrangian measurements of flow quantities.
Haller et al. [7], for example, sampled the vorticity of particles across a coherence time interval
and drew coherent groups from sets of particles with high deviations from the mean flow vorticity
during this time interval. There are other methods still, like that of Froyland and Padberg-Gehle [8],
which uses another well-known data science algorithm, fuzzy c-means clustering, to extract sets of
trajectories from dense regions of the trajectory phase space. These methods and many others are
compared by Allshouse and Peacock [9] and Hadjighasem et al. [10].

Just as there are many unsolved problems in data clustering generally, certain issues remain with
LCS detection algorithms. One major shortcoming of many LCS detection methods, for example, is
their lack of temporal resolution. Because LCS detection depends on measuring some Lagrangian
metric across a coherence time scale τC , there is no clear method for cases where the time scale
of analysis, say τF , is significantly larger than the time scale of coherence, τC . Analyzing coherent
structures in turbulent convection is one such example of this predicament, an issue noticed by
Schneide et al. [11]. As a result, LCS detection methods have primarily been validated with simple,
canonical flows like the double gyre or the Bickley jet.

In this paper, we intend to address this shortcoming by utilizing a preexisting algorithm devel-
oped for a disparate field; here, we borrow from a group of algorithms developed for use in machine
vision known as multiple object trackers. The following basic problem arises in machine vision:
Object detection algorithms can identify objects in a single frame of a video, often using techniques
like spectral or fuzzy c-means clustering. In consecutive frames of a video, however, objects may
enter the view of the camera, move around, or leave altogether. Because a clustering algorithm
has no knowledge of the actual objects it is describing, cluster detections at different frames need
to be connected to each other if they describe the same actual object. This structure containing
many different clusters, all which describe the same object, is referred to as a track. The parallels
between the problems of video tracking and time-dependent coherent structure detection are clear,
and what is missing from LCS methods is the ability to dynamically track the evolution of LCSs in
time-dependent flows.

Just as for clustering, there have been a proliferation of algorithms to attack this problem (see
Ref. [12] for a review). We further note that this problem is not totally new to fluid dynamics; in
fact, many similar algorithms have been developed in the context of Lagrangian particle tracking in
flow experiments [13]. We test only one here, an approach which utilizes the Hungarian algorithm
to track objects in time. We choose the Hungarian algorithm approach because of its relatively
low computational cost, ease of implementation, and the abundance of literature concerning its
implementation and operation [14,15].

As we demonstrate, the multiple object tracking (MOT) approach that we outline does not replace
current LCS detection techniques; it only extends them to evolving structures. Its performance,
therefore, is bound by the fidelity with which LCSs themselves can be detected, and MOT is
likewise afflicted with issues affecting clustering algorithms more generally. One such issue which
limits the application of LCS analysis in complex flows, for example, is that the number of clusters
present in a dataset must often be known a priori. While the eigengap heuristic of Hadjighasem
et al. [4] gives an estimate of the number of clusters, the method seems only suitable for simple
flows and well-defined trajectory clusters. Although Schneide et al. [11] applied this method for
the extraction of turbulent rolls in Rayleigh-Benard convection with some success, the eigengap
heuristic as a theoretical concept has been critiqued among data science users for lack of convincing
theoretical support and frequent poor performance [16]. Even with these limitations, we show that
the application of MOT to track dynamics of LCSs offers rich insights into flow dynamics that are
otherwise unreachable via traditional LCS analysis.
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In the following section, we detail the steps needed to implement the Hungarian algorithm for
the dynamic tracking of LCSs. In Sec. III, we revisit a test case studied by Haller et al. [7] and show
an added dimension of analysis once evolving LCSs are considered. We then study cases of highly
transient LCSs in experimental turbulence. Finally, we conclude in Sec. IV and offer suggestions
for future research activity directed at the study of evolving LCSs using MOT.

II. METHODS

A. Clustering

While it is not the focus of our analysis, we first outline the clustering method which will be used
for our study. We choose the fuzzy c-means clustering described by Froyland and Padberg-Gehle [8]
because of its simple implementation [via the MATLAB fcm( ) function] and its ability to handle large
numbers of tracers. We emphasize, however, that the choice of clustering algorithm is somewhat
arbitrary, and that the object tracking methodology introduced below can be implemented with
other choices of clustering technique.

Beginning with a set of Np Lagrangian particle trajectories sampled at time intervals T =
(0, 1, . . . , Nt )�t , we build an array X ∈ RNp×dNt where d is the number of spatial dimensions of
the data and each row of X contains the concatenated trajectories of each particle over the coherent
time interval of interest. The algorithm then randomly initializes k cluster centers Cj in RdNt and
estimates the “fitness” of these centers (i.e., how close their member trajectories are) by evaluating
the objective function

�(u,C) =
k∑

j=1

Np∑

i=1

um
j,i||Xi − Cj ||2, (1)

where uj,i is the membership value, or the probability that a trajectory i belongs to a cluster j,
and m > 1 is the fuzziness parameter, controlling by what degree different clusters can overlap. In
general, larger values of m will produce clusters with greater membership overlap (or fuzziness),
while values of m closer to unity produce clusters which are well delineated.

The initial values of u j,i and Cj can be chosen at random. At each iteration of the algorithm, the
positions of the centers are updated by

Cj =
∑Np

i=1 um
j,iXi

∑Np

i=1 um
j,i

, (2)

and the membership values are updated by

u j,i = ||Xi − Cj ||− 2
m−1

∑k
p=1 ||Xi − Cp||− 2

m−1

. (3)

The iterations can be terminated once the objective function given by Eq. (1) falls below a certain
value or after a fixed number of iterations are complete. The results of these iterations are a list of
membership values uj,i ∈ [0, 1] for each trajectory i and each cluster j. Each trajectory i is given
cluster membership in the cluster j with the largest associated uj,i, provided that u j,i > q where
q is some fixed threshold. The particles which have no value of uj,i exceeding the threshold q are
considered incoherent. Further details of the clustering algorithm can be found in Ref. [8].

Once the threshold q is applied to the membership data, we have divided the Np particles into k
coherent sets and one incoherent set. This step is important as it is generally agreed that coherent
flow structures can only be perceived against a background of incoherence [4]. If no q threshold is
enforced, every particle becomes a member of some coherent structure. Even with this feature,
however, the algorithm still makes no distinctions about over what subset of the Nt points the
trajectories exhibit coherence, just that the distance of their position in trajectory phase space is
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FIG. 1. Object tracking across two intervals, fp and fp+1. Dotted arrows show objects which are created
or destroyed across the two intervals. Solid arrows show objects which persist across the intervals. Note that
the numbering of the objects has no correspondence to the actual object being tracked (i.e., the yellow box is
object 3 in fp and object 1 in fp+1).

close to their cluster center. As a result, each particle over the Nt�t time interval can only be a
member of a single cluster (neglecting, of course, the fuzzy overlap).

B. Object tracking

With the following steps we extend this clustering approach to the dynamic case, where LCSs
are created and destroyed, and particles through their lifetimes may be members of many different
coherent structures. From the time steps T = (0, 1, . . . , Nt )�t , we construct a set of � overlapping
intervals of equal length F = ( f1, f2, . . . , f� ). Each interval consists of α time steps and overlap
each other by α − β � 0 time steps such that f1 = (t0, t1, . . . , tα ), f2 = (tβ, t1+β, . . . , tα+β ), and so
on. At each interval p, the specified clustering algorithm (fuzzy c-means in our case) is utilized to
create a set of kp unique trajectory clusters, denoted Cp = (c1

p, c2
p, . . . , c

kp
p ).

Clusters identified at different intervals may describe the same LCS, which itself may grow or
shrink as it entrains or ejects fluid particles. The goal, then, is to create a set of n tracks, R =
(r1, r2, . . . , rn), which are themselves sets of clusters from different intervals all which purport to
describe the same structure. Figure 1 visually demonstrates this approach.

Because the same structures are composed of approximately the same particles between con-
secutive intervals, we calculate the Jaccard index between two clusters i and j as J (i, j) =

number of shared particles
number of total unique particles . If i and j describe structures with the same particles, J (i, j) = 1, whereas
two structures with no similarity will have J (i, j) = 0. Two clusters in consecutive intervals which
describe the same underlying structure will have a high Jaccard index.

Now, we follow the MOT approach of Weng et al. [15] for building the set of tracks. We begin
at interval f1 and initialize k1 tracks R = (r1, r2, . . . , rk1 ) with each initially detected cluster C1 =
(c1

1, c2
1, . . . , ck1

1 ) of the first interval.
In subsequent steps, we attempt to match these clusters with the last cluster associated with each

of these tracks. To match a set of clusters C2 with length k2 with a set of clusters C1 with length k1, we
create a k2 × k1 Jaccard index matrix, where each entry is the Jaccard index between every cluster
pair between C1 and C2. Each column of this matrix denotes the Jaccard index of every cluster in
C2 with a single cluster in C1. The best matching in each column will by definition have the highest
Jaccard index, but the optimal pairing is nontrivial as there may be repeats where one cluster in C2

is the best match for multiple clusters in C1. This would happen, for instance, in the case where two
structures in f1 merged into a single structure in f2. The question of finding this optimal pairing
solution (a solution where the total Jaccard index is maximized) is called the assignment problem,
and is solved using the Hungarian algorithm [17]. The result of this algorithm is a list M of length
k1, where each entry points to the clusters in C2 which are best fit for each cluster in C1. If k1 > k2,
there are not enough clusters in C2 to match each cluster in C1 so there will be null entries in the list
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M. As a guard against poor matching, Weng et al. [15] suggested additionally discarding matches
below a certain threshold Jmin, increasing the number of null entries in M.

After initializing at interval p = 1, we continue to each subsequent interval and attempt to match
the current clusters with the last associated cluster of the current tracks. To allow for misdetections
but also to terminate structures once they are gone, we use a tolerance parameter ND; a track is only
terminated if it goes without a match for ND consecutive intervals. To formalize this process, we
define the set Rlast of length kt as the set of the last matching cluster of each current track, where a
current track is defined as a track which has had a cluster match in the last ND intervals.

As an example, suppose we have � = 4 intervals, F = ( f1, f2, f3, f4), with cluster sets C1,
C2, C3, and C4. By interval 4, we have n = 3 tracks R = (r1, r2, r3), themselves defined by
r1 = (c1

1, c3
2, 0, 0), r2 = (c2

1, c1
2, c2

3, 0), and r3 = (c1
3, c3

4). Note that while r1 and r2 in this example
were initialized at the first interval, r3 was not initialized until the third interval. In the case where
ND = 1, at the fourth interval we compute Rlast = (c2

3, c3
4 ), as the current intervals are r2 and r3. If

ND = 2, Rlast would instead become Rlast = (c3
2, c2

3, c3
4). The reason for having ND > 0 is to allow for

inaccuracies in the clustering method, as real objects may go undetected for a number of intervals
before being properly detected again.

At each interval fp>1, we use the Hungarian algorithm on the kp × kt matrix formed between
the current clusters Cp and the last matching cluster of the current tracks, Rlast , discarding matches
below the threshold Jmin. After each matching step, we are left with four categories of clusters:
those from Cp which have matches, Cm

p ; those from Cp which have no matches, Cnm
p ; those from

Rlast which have matches, Rm
last; and those from Rlast which do not, Rnm

last . We append the matched
clusters in Cm

p to the tracks in R associated with the clusters in Rm
last . These are coherent structures

which existed in the previous interval and have continued to the current interval. For clusters in
Rnm

last , tracks which have either been destroyed or erroneously missed detection, we append the null
character to their associated track in R. Finally, we treat clusters in Cnm

p as the potential birth of new
clusters and create new tracks in R with each cluster in Cnm

p as its initial entry. This approach is
summarized in Fig. 2 as well as in Algorithm 1.

Algorithm 1: Detection of evolving LCSs via the Hungarian algorithm.
(1) Break down time steps T = (0, 1, . . . , Nt )�t into intervals F = ( f1, f2, . . . , f� ) each of

length α time steps.
(2) Using any desired clustering algorithm, cluster trajectories at each interval fp to create � sets

of kp clusters, Cp = (c1
p, c2

p, . . . , c
kp
p ), and create the track list R. The track list will contain lists of

clusters which describe the same LCS. Initialize the track list with the initial cluster detections C1.
(3) Starting at p = 2 and for each subsequent interval, create a kp × kt matrix containing the

Jaccard index between each cluster detected at interval kp and the last detected cluster belonging
to each track. The last detected cluster of each track is defined as the cluster of a track which has
a matched cluster in the past ND intervals. Use the Hungarian algorithm to find optimal matching
between clusters found at frame p and each track and reject matches with a Jaccard index below
Jmin.

(4) Clusters in interval p with no matches are considered possible births and are initialized in the
track list R. Tracks with no new cluster match are considered possible deaths and a zero is appended
to their cluster membership list.

After iteratively applying this process to each of the � intervals, we have n tracks which consist of
a collection of clusters from different intervals which describe the same structure. While traditional
clustering methods have no temporal resolution, our method has a temporal resolution which is still
limited by the size of the intervals α. Thus, α should be the smallest possible value such that α�t
still exceeds the coherence time scale τC .

A few further notes on particle memberships: over the course of a flow, individual particles may
be members of many different tracks. Because the tracks themselves are composed of clusters with
generally differing particle memberships (i.e., Jaccard indices between different clusters are less
than unity) and may even have null entries for intervals where they were not detected, individual
particles may have rather erratic and nonphysical track memberships. For instance, the members
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FIG. 2. Overview of our proposed algorithm. (a) Nt time steps of simulation are broken down into �

intervals of length α and overlap α − β. In this figure α = 4 and β = 1. Clustering is performed across each
of the � intervals. (b) Rlast is created from R as the last associated cluster of all tracks which have had a
cluster association in the last ND time intervals. Clusters in the each interval are associated with clusters in Rlast

using the Hungarian algorithm. (c) The matched clusters, Cm
p , are appended to the tracks associated with the

corresponding Rm
last . Unmatched clusters from the current interval Cum

p are treated as potential births and added
to R as new tracks. Unmatched clusters from Rlast , denoted Rum

last are treated as potential deaths and the character
0 is appended to their associated track in R.

of an example track r1 = (c6
5, c8

6, 0, 0, c3
9 ) will have no clear membership values at intervals 7 and

8, the intervals where no cluster was found with a high enough Jaccard index. To handle these
missed detections, we assemble a matrix P ∈ RNp×Nt ×n, where an entry PI,J,K is unity if a particle
I is associated with a cluster belonging to track K at time step J and zero otherwise. We can then
apply a running average across the time dimension of this matrix and enforce particle membership
in tracks when the running average of a particle in some track rises above some threshold. This final
step is not necessary for large values of α, but as the temporal resolution is increased (α is decreased)
it may become necessary for smoother tracks. This allows for some errors in the cluster detection,
as clustering methods not based on strict mathematical rules will not always pick the exact optimal
clusters, or even the same clusters given the same data, but we rely on the principle that after many
clustering attempts, the algorithm is more likely to identify true clusters than random noise.

Finally, for purposes of time-dependent analysis, special care should be taken with respect to the
temporal resolution of our method. Recall that clustering is taken over an interval of α time steps,
so the membership of particles is defined over successive intervals, not successive time steps. For
our analysis, we take the particles to be members of a track for the final time step of an interval over
which it belongs to a particular cluster. This arises from the interpretation that the clustering of a
particle over α time steps indicates that at any particular time step, it has been coherent over the past
α time steps, rather than α/2 time steps before and α/2 time steps after, or some other combination.

III. RESULTS

We now apply our proposed algorithm to two different test cases. First, we revisit the Agulhas
leakage dataset studied by Haller et al. [7] and show how an analysis of evolving LCSs offers a
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FIG. 3. Example clustering results for (a) α = 1, (b) α = 10, (c) α = 50, (d) α = 100, and (e) α = 200.

deeper understanding of role of LCSs in the transport of particles in the flow. Then, we analyze an
experimental dataset of two-dimensional turbulence to show the strengths of the algorithm in a case
where LCSs are extremely transient and are governed by many different time scales.

A. Two-dimensional ocean tracers

We show here the added dimension of analysis available when evolving LCSs are considered.
The studied dataset consists of ocean tracers found in the Agulhas leakage in the Southern Ocean
between the 90 days [11 November 2006, 9 February 2007], longitudes [−4◦, 9◦], and latitudes
[−35◦,−28◦]. As the Agulhas current reaches the southernmost point of the African continent, the
“leakage” of Indian Ocean water into the Atlantic often exhibits striking coherent structures visible
both in ocean circulation models and from remote sensing. This area of the ocean has a particular
relevance because of its importance in the global climate system [18] and has been studied in the
context of LCS algorithm development because of its distinct vortices, two of which we will analyze.
Tracers are integrated by a fourth-order Runge-Kutta method through satellite-obtained velocity
fields and their positions are sampled at 600 evenly spaced time intervals. A complete description
and a link to the data used in this study are found in Ref. [7].

It is, in principle, difficult to systematically choose a value of the interval length α with which to
analyze a flow. In traditional LCS analysis, this problem is no less present, as α is chosen by default
as the duration of the flow being analyzed. Furthermore, the effect of α on the transient LCSs
detected will vary with the method of clustering which is used. Fuzzy clustering with a Euclidean
distance metric as its objective function, for example, will cluster together trajectories which are
spherical in their d × α dimension trajectory space. With this distance metric, choosing α = 1
will produce clusters that are approximately spherical in the two-dimensional trajectory space, or
circular clusters. More fundamentally, the selection of a small α cannot capture any of the coherence
information that a LCS detection technique ought to. An overly large choice of α, however, will lead
to a loss of coherence as additional noncoherent trajectory points are used in the clustering. Figure 3
shows the clusters obtained for values of increasing α and serves as a visual selection criterion.

In general, α should be selected as small as possible without falling below the coherence time
scale of the flow. This ensures that our MOT method can uncover the transient dynamics of LCSs
while still discovering the relevant coherent structures. To illustrate this point and for the sake of
comparison, once the tracers are sufficiently developed, we apply fuzzy c-means clustering over
the entire time interval T = [30, 75] days using clustering parameters m = 2, q = 0.1, k = 30,
and α = Nt (α is the entire duration of the flow). This is similar to what a typical LCS analysis
might consist of. For simplicity, we only consider the two central counter-rotating vortices of the
dataset. Figures 4(a)–4(d) show the clustering results for these two vortices over this time interval.
As evident from the figure, this static clustering will only group particles that are coherent across
the total time interval. The consequence of this is that yellow particles can be found inside the
red vortex since the method is not sensitive to particles which are members of different coherent
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FIG. 4. (a–d) Static clustering results across the interval T = [30, 75] days. Moving right, the same static
clustering results are displayed at day 30, day 45, day 60, and day 75. (e–h) Dynamic clustering across the
same time period and shown at the same days using MOT. In both cases, the left vortex is displayed in yellow
and the right vortex is displayed in red.

structures during their lifetimes. In contrast, we show our object tracking results in Figs. 4(e)–4(h):
using a minimum coherence interval α = 100 (15 days), our method is sensitive to the changing
shape of the two different vortices.

We can demonstrate, for example, that the sizes of these two vortices are changing as particles
dynamically enter and exit the structures. Figure 5 shows the number of particles contained in each
cluster as time evolves, confirming that the right vortex is siphoning membership from the left
vortex; this is qualitatively the mixing seen in the static Figs. 4(a)–4(d). Since it is evident that the
left vortex is shedding particles while the right vortex is entraining them, we can further analyze
this behavior by looking at the tracks’ respective dynamic particle membership. Figure 6 shows
the clusters at day 68 with their current particle members colored according to the time since they
were first members in the vortex. Since the left vortex is mostly decreasing in particle count, all the
particles which are currently members of the vortex have been there for the same time (i.e., since
the birth of the cluster; roughly 35 days). In contrast, the right vortex exhibits several distinct layers
of particles. Each layer has a distinct time signature which is sharply delineated from surrounding
layers. These dynamics are effectively hidden from a clustering analysis that only looks at coherence
across the total time interval, and yields insight into the dynamics of the coherent structure itself.

To further emphasize this point, in Fig. 7 we visualize the particles which cross over from the
left vortex into the right vortex over the time interval considered. It is qualitatively clear that the
particles which switch from the left to the right vortex represent the principle differences between
static clustering results and dynamic clustering results (see Fig. 4).

B. Two-dimensional experimental turbulence

Our next subject of analysis is a dataset of experimental two-dimensional turbulence obtained
via particle tracking velocimetry. The time interval we analyze consists of tracers advected over
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FIG. 5. Plot of cluster membership against time for the two central vortices.

the time interval T = [0, 34] s, with a characteristic eddy turnover time of 2.9 s. The methods and
postprocessing applied to the original PTV are described fully in Ref. [19]. Tracers are integrated
across the available velocity fields using Euler’s method and sampled at Nt = 200 evenly spaced
points within the considered time frame.

In this application, we demonstrate the ability of our proposed algorithm to handle large numbers
of transient LCSs, since this is a more complex dataset than the ocean tracer set in the previous
section. In particular, this example provides a case where the time scale of analysis is much larger
than the time scale of coherence, or τF � τC . In this case, our known τC ≈ 2.9 s sets a lower limit on
the scale we want to resolve and track through a time τF ; i.e., one may want to describe quantities
which evolve over the course of the entire experiment, but clustering over this entire time frame

FIG. 6. Snapshot of tracer particles on day 67. (a) Left central vortex. (b) Right central vortex. Current
particle members are colored by how long they have been inside the displayed structure.
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FIG. 7. Visualization of tracers (red) which cross over from the left vortex to the right vortex. Times
displayed are for (a) day 30, (b) day 45, (c) day 60, and (d) day 75.

would be meaningless as particles will only remain in groups for a small fraction of the total time
frame.

At a first glance, we can visually inspect the coherence of this flow by drawing unbroken
trajectories over varying numbers of time steps. As with our last example, this serves to qualitatively
guide a selection of α. For our analysis we pick α = 30, creating intervals which last 5.1 s. Figure 8
displays the MOT results using these values, along with fuzzy c-means clustering parameters
k = 50, m = 1.5, and q = 0.9.

As noted in the previous example, clustering methods often show sensitivity to changes in
various parameters. Schlueter-Kuck and Dabiri [20], for example, showed that spectral clustering
only exhibits an accurate spectral gap and correct cluster count when the interparticle similarity
matrix is properly sparsified. Fuzzy c-means clustering also has several tunable parameters which
may influence its clustering results. This raises a concern for noncanonical flows where the a
priori number of structures cannot be guessed by visual inspection. By comparing Figs. 8(a)–8(c)
with Figs. 8(d)–8(f) we can see that many coherent flow structures are captured, but our MOT
approach cannot outperform the clustering method it uses to identify LCSs in the first place; i.e., the
tracking algorithm is fundamentally limited by the accuracy of the underlying clustering method.
The clustering results at each of our intervals are very similar to those obtained by Hadjighasem
et al. [10] using the same clustering method, but the objective validity of LCSs detected are hard to
quantify beyond the subjective opinion of an observer.

There are, however, some methods for quantitatively assessing the accuracy of LCS detection
methods. Beron-Vera et al. [2], for example, calculated the mean pairwise distance of particles
inside detected LCSs. For our clustering method, however, this is to be expected, since by definition
particles in the same LCS have shown a higher degree of spatial coherence than the outside flow.
Therefore, we instead take an approach utilized by Fang et al. [21], where coherent structures are
checked by using a quantity unrelated to their definition. Visual inspection of our object tracking
results (Fig. 8) shows that many of the detected structures appear to be rotational in nature, so we
employ the instantaneous vorticity deviation (IVD) metric of Haller et al. [7], defined as

IVD(x, t ) = |ω(x, t ) − ω̄(t )|, (4)

where ω is vorticity and the overbar denotes an average across all particles. Because the turbulent
flow considered has distinct vortices, many of which are created and destroyed as the flow progresses
in time, we can measure the IVD experienced by a particle in a particular evolving LCS before,
during, and after it is detected as part of this respective structure. This is visualized in Fig. 9. Here,
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FIG. 8. Tracer trajectories drawn over the interval duration α = 30 time steps. (a–c) All tracers in the flow
at respective intervals f1, f51, and f101. (d–f) Tracers colored by their track membership at the same intervals,
excluding tracers without any tracks.

t = 0 refers to the time when a cluster is first identified, and the transparent curves refer to the
average IVD of all particles which are a member of it, before and after its initiation. As one may
expect, particles experience the highest IVD in the time shortly after they are detected as being
part of a coherent structure. Figure 9 demonstrates that the object tracking algorithm outlined in
this work can identify the time evolution of kinematic flow features associated with the LCSs, and
shows that a characteristic lifetime of the coherent motions exceeds roughly 20 s (i.e., when the
mean IVD decreases to predetection levels). In the case of the two-dimensional turbulence dataset,
the peak of IVD shortly after cluster identification and its eventual decay provides insight into the
time response of these vortical regions. This is noteworthy especially since the clustering algorithm
has no knowledge of the flow vorticity.

As a final result, we note that the outlined MOT approach can also track the merging and splitting
of coherent structures. Figures 10 and 11 show merging and splitting events, respectively, and offer
insights into how the Hungarian algorithm may handle these cases. In Fig. 10, two independent
structures are detected for several intervals and eventually come together into a single structure. In
an intermediate step, however, a third structure is detected between the original two and its identity
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FIG. 9. Plot of IVD against time for different clusters. Each line shows the mean IVD of particles that are
members of particular evolving clusters, and t = 0 is when the object is formally detected. As expected, the
high IVD for the particles in the tracks is reached around the same time they are detected as a track. The mean
of all of tracks is shown in black.

is maintained as the eventual merged structure. In Fig. 11, a single structure splits into two smaller
structures. As the Hungarian algorithm assigns continuity based on the Jaccard index, the larger of
the two child structures will maintain the identity of its parent and the smaller will become a new
track. The combined information contained in Figs. 9–11 thus highlights the prospects of using this
algorithm for understanding the life cycles of these coherent structures.

IV. CONCLUSION

In this paper, we have presented a method for extending traditional LCS analysis to the detection
and study of time-dependent, evolving LCSs. In particular, by dividing a dataset into many unique

FIG. 10. Merging event observed in the turbulence data set. As the two initial structures (red and blue)
approach one another, a third structure is detected and assimilates the two smaller structures. Time advances
from (a) to (j).
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FIG. 11. Splitting event observed in the turbulence data set. The initial structure (green) breaks into two
smaller structures (red and green). The larger of the two maintains the identity of the initial structure. Time
advances from (a) to (j).

coherence intervals, we allow existing LCS detection methods to deploy on unsteady flows with co-
herent structures of varying sizes and time scales. We explore the uses of our algorithm together with
fuzzy c-means clustering, but we stress that other LCS approaches are equally or more suitable for
different problems. For example, we anticipate that detection approaches like Lagrangian-averaged
vorticity deviation would be very successful with our MOT method due to its mathematically
well-defined clusters, which would not likely deviate significantly between intervals.

While we demonstrate that the evolving coherent structures which we detect exhibit more
coherence than the mean flow, it is still unclear how much parametric changes in both the clustering
method and the MOT method will alter statistics associated with the transient clusters. Along these
lines, flows which have less verifiable coherent structures pose a difficulty to our proposed MOT
method. Three-dimensional turbulence, for example, attracts fewer LCS analyses because it is less
straightforward to verify the ground truth of coherence. Traditional LCS analysis, of course, shares
this weakness, but it is amplified in our algorithm because subsequent intervals may yield incorrect
or conflicting cluster identifications. To improve our MOT algorithm, LCS methods which have
fewer parameters and more verifiable results are needed. We further note that the extraction of
temporal statistics is not straightforward because coherence even in the tracks is not defined at
time steps, but rather time intervals. These are not, of course, issues just experienced within LCS
detection, but problems in object detection more generally, and we leave it to future work to quantify
the importance of these parametric changes to the ground truth of evolving LCSs.
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